Search
Filters

11294 Susceptibility of Hydrogen Induced Stress Cracking of Duplex Stainless Steel at Elevated Temperature

Experience has shown that stainless steels can suffer from Hydrogen Induced Stress Cracking (HISC) under cathodic protection in seawater.  This paper presents results from a test program examining the HISC susceptibility of 25% Cr super duplex stainless steel (UNS S32750) at temperatures up to 1500C.

Product Number: 51300-11294-SG
ISBN: 2011 11294 CP
Author: Roy Johnson, Bard Nyhus, and Ole Edvard Kongstein
Publication Date: 2011
$0.00
$20.00
$20.00

Experience has shown that stainless steels can suffer from Hydrogen Induced Stress Cracking (HISC) under cathodic protection in seawater. During the last years major research projects have been executed to establish a better understanding of the mechanisms and to develop qualification methods and design procedures. It is a common understanding that the probability of HISC initiation increase with decreased temperature. Most of the testing has therefore been executed at room temperature or at lower temperatures. What about higher temperatures – will HISC still be a problem at temperatures above 800C?

This paper presents results from a test program examining the HISC susceptibility of 25% Cr super duplex stainless steel (UNS S32750) at temperatures up to 1500C. Both Slow Strain Rate Testing (SSRT) and Single Edge Notch Test (SENT) specimens were tested in 3.5% NaCl solution. The SSRT results from hydrogen charged specimens were compared to specimens tested in air (no hydrogen charging).

The results from the testing indicated that 25% Cr super duplex stainless steel was susceptible to HISC even at 1500C.

Keywords: Hydrogen Induced Stress Cracking, seawater, cathodic protection, elevated temperature, duplex stainless steel

Experience has shown that stainless steels can suffer from Hydrogen Induced Stress Cracking (HISC) under cathodic protection in seawater. During the last years major research projects have been executed to establish a better understanding of the mechanisms and to develop qualification methods and design procedures. It is a common understanding that the probability of HISC initiation increase with decreased temperature. Most of the testing has therefore been executed at room temperature or at lower temperatures. What about higher temperatures – will HISC still be a problem at temperatures above 800C?

This paper presents results from a test program examining the HISC susceptibility of 25% Cr super duplex stainless steel (UNS S32750) at temperatures up to 1500C. Both Slow Strain Rate Testing (SSRT) and Single Edge Notch Test (SENT) specimens were tested in 3.5% NaCl solution. The SSRT results from hydrogen charged specimens were compared to specimens tested in air (no hydrogen charging).

The results from the testing indicated that 25% Cr super duplex stainless steel was susceptible to HISC even at 1500C.

Keywords: Hydrogen Induced Stress Cracking, seawater, cathodic protection, elevated temperature, duplex stainless steel

Also Purchased
Picture for 09300 Stress Corrosion Cracking of Super Duplex Stainless Steels above and below Pitting Potentials
Available for download

09300 Stress Corrosion Cracking of Super Duplex Stainless Steels above and below Pitting Potentials

Product Number: 51300-09300-SG
ISBN: 09300 2009 CP
Author: Janardhan Rao Saithala, John Atkinson, Harvindher Singh Ubhi, Andy Houghton and Steve McCoy
Publication Date: 2009
$20.00
Picture for Resistance to Stress Corrosion Cracking of Duplex Stainless Steels
Available for download

51313-02086-Resistance to Stress Corrosion Cracking of Duplex Stainless Steels

Product Number: 51313-02086-SG
ISBN: 02086 2013 CP
Author: Sandra Le Manchet
Publication Date: 2013
$20.00
Picture for 11255 Pitting Corrosion Mechanisms of Lean Duplex
Available for download

11255 Pitting Corrosion Mechanisms of Lean Duplex, Duplex and Super Duplex Stainless Steels in Chloride Solutions

Product Number: 51300-11255-SG
ISBN: 2011 11255 CP
Author: J. Saithala, J. Atkinson, H Ubhi, A. Patil
Publication Date: 2011
$20.00