Search
Filters
Close

Get BIG discounts on selected titles from NACE and SSPC.  Shop Now

A Prediction and Inspection Technology for Detecting the Corrosion Under Insulation

Corrosion under insulation (CUI) is a critical challenge that affects the integrity of assets for which the oil and gas industry is not immune. Over the last few decades, both downstream and upstream industry segments have recognized the magnitude of CUI and challenges faced by the industry in its ability to handle CUI risk-based assessment, predictive detection and inspection of CUI. It is a concern that is hidden, invisible to inspectors and prompted mainly by moisture ingress between the insulation and the metallic pipe surface. The industry faces significant issues in the inspection of insulated assets, not only of pipes, but also tanks and vessels in terms of detection accuracy and precision. Currently, there is no reliable NDT detection tool that can predict the CUI spots in a safe and fast manner. In this study, a cyber physical-based approach is being presented to identify susceptible locations of CUI through a collection of infrared data overtime. The experimental results and data analysis demonstrates the feasibility of utilizing machine-learning techniques coupled with thermography to predict areas of concern. This is through a simplified clustering and classification model utilizing the Convolutional Neural Networks (CNN). This is a unique and innovative inspection technique in tackling complex challenges within the oil and gas industry, utilizing trending technologies such as big data analytics and artificial intelligence.

Product Number: MPWT19-15162
Author: Ayman Amer, Ali Al Shehri, Vincent Cunningham, Ihsan Taie
Publication Date: 2019
$0.00
$0.00
$0.00
Also Purchased