Search
Filters

Crevice Crrosion of Copper as an Engineering Barrier of High-level Radioactive Waste Containers

This work is aimed at determining the viability of oxygen-free copper as an engineering barrier of high-level radioactive waste containers.

Product Number: 51317--9162-SG
ISBN: 9162 2017 CP
Author: Maite Ochoa
Publication Date: 2017
$0.00
$20.00
$20.00

This work is aimed at determining the viability of oxygen-free copper as an engineering barrier of high-level radioactive waste containers. This material stands out because of its excellent resistance to generalized and localized corrosion in aqueous electrolytes; particularly in reducing environments as the ones expected in repository sites located below the water table.As the first part of a more general analysis the corrosive effects of chloride sulfate and bicarbonate and that of temperature were studied analyzing each anion separately as well as in different combinations of them. These anions are generally present in groundwaters such as those potentially in contact with the engineered barriers of a nuclear repository. The concentrations of chloride sulfate and bicarbonate were between 0.001 and 1 M and the temperatures were between 30 and 90°C. An electrochemical characterization was carried out through the measurement of the corrosion potential and the anodic polarization curves and 8 systems were selected from the original 27 studied systems for studying stress corrosion cracking and crevice corrosion.In this stage of the work tests were developed to determine the existence of crevice corrosion: open circuit potential tests and Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) tests. Artificial crevice formers were used in both cases. Scanning electron microscopy and optical microscopy were used to characterize the creviced specimens after testing. Corrosion products composition was determined by Energy Dispersive Microanalysis (EDS).The crevice corrosion tests showed that crevice corrosion is observed only in some of the 8 selected solutions. The corrosion was not very deep and it occurred below the edges of the crevice formers. Some corrosion was observed out of the crevices indicating the possible occurrence of inverse crevice corrosion which needs further investigation.

Key words: copper, crevice corrosion, radioactive waste container, chloride, sulfate, bicarbonate

 

This work is aimed at determining the viability of oxygen-free copper as an engineering barrier of high-level radioactive waste containers. This material stands out because of its excellent resistance to generalized and localized corrosion in aqueous electrolytes; particularly in reducing environments as the ones expected in repository sites located below the water table.As the first part of a more general analysis the corrosive effects of chloride sulfate and bicarbonate and that of temperature were studied analyzing each anion separately as well as in different combinations of them. These anions are generally present in groundwaters such as those potentially in contact with the engineered barriers of a nuclear repository. The concentrations of chloride sulfate and bicarbonate were between 0.001 and 1 M and the temperatures were between 30 and 90°C. An electrochemical characterization was carried out through the measurement of the corrosion potential and the anodic polarization curves and 8 systems were selected from the original 27 studied systems for studying stress corrosion cracking and crevice corrosion.In this stage of the work tests were developed to determine the existence of crevice corrosion: open circuit potential tests and Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) tests. Artificial crevice formers were used in both cases. Scanning electron microscopy and optical microscopy were used to characterize the creviced specimens after testing. Corrosion products composition was determined by Energy Dispersive Microanalysis (EDS).The crevice corrosion tests showed that crevice corrosion is observed only in some of the 8 selected solutions. The corrosion was not very deep and it occurred below the edges of the crevice formers. Some corrosion was observed out of the crevices indicating the possible occurrence of inverse crevice corrosion which needs further investigation.

Key words: copper, crevice corrosion, radioactive waste container, chloride, sulfate, bicarbonate

 

Also Purchased
Picture for 00652 PITTING CORROSION IN DOMESTIC COPPER
Available for download

00652 PITTING CORROSION IN DOMESTIC COPPER PLUMBING THE RISE AND FALL OF THE "PITTING WATER" THEORY

Product Number: 51300-00652-SG
ISBN: 00652 2000 CP
Author: Peter F. Ellis II
$20.00
Picture for 01486 FAILURES OF COPPER POTABLE WATER PIPING
Available for download

01486 FAILURES OF COPPER POTABLE WATER PIPING DUE TO DESIGN, MATERIALS AND POOR WORKMANSHIP

Product Number: 51300-01486-SG
ISBN: 01486 2001 CP
Author: R.S. Charlton
$20.00
Picture for 03569 MICROBIOLOGICALLY INDUCED CORROSION
Available for download

03569 MICROBIOLOGICALLY INDUCED CORROSION OF COPPER PIPING SYSTEM - FAILURE ANALYSIS

Product Number: 51300-03569-SG
ISBN: 03569 2003 CP
Author: E. M. Labuda
$20.00